Quantifying Snow Albedo Radiative Forcing and Its Feedback during 2003-2016

نویسندگان

  • Lin Xiao
  • Tao Che
  • Linling Chen
  • Hongjie Xie
  • Liyun Dai
چکیده

Snow albedo feedback is one of the most crucial feedback processes that control equilibrium climate sensitivity, which is a central parameter for better prediction of future climate change. However, persistent large discrepancies and uncertainties are found in snow albedo feedback estimations. Remotely sensed snow cover products, atmospheric reanalysis data and radiative kernel data are used in this study to quantify snow albedo radiative forcing and its feedback on both hemispheric and global scales during 2003–2016. The strongest snow albedo radiative forcing is located north of 30◦N, apart from Antarctica. In general, it has large monthly variation and peaks in spring. Snow albedo feedback is estimated to be 0.18 ± 0.08 W·m−2·◦C−1 and 0.04 ± 0.02 W·m−2·◦C−1 on hemispheric and global scales, respectively. Compared to previous studies, this paper focuses specifically on quantifying snow albedo feedback and demonstrates three improvements: (1) used high spatial and temporal resolution satellite-based snow cover data to determine the areas of snow albedo radiative forcing and feedback; (2) provided detailed information for model parameterization by using the results from (1), together with accurate description of snow cover change and constrained snow albedo and snow-free albedo data; and (3) effectively reduced the uncertainty of snow albedo feedback and increased its confidence level through the block bootstrap test. Our results of snow albedo feedback agreed well with other partially observation-based studies and indicate that the 25 Coupled Model Intercomparison Project Phase 5 (CMIP5) models might have overestimated the snow albedo feedback, largely due to the overestimation of surface albedo change between snow-covered and snow-free surface in these models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008

The extent of snow cover1 and sea ice2 in the Northern Hemisphere has declined since 1979, coincident with hemispheric warming and indicative of a positive feedback of surface reflectivity on climate. This albedo feedback of snow on land has been quantified from observations at seasonal timescales3–6, and century-scale feedback has been assessed using climate models7–10. However, the total impa...

متن کامل

Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncer...

متن کامل

Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings

Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate snow and ice melt, and trigger albedo feedback. Assessing BC and dust concentrations in snow and ice in the Himalaya is of interest because this region borders large BC and dust sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ...

متن کامل

Black-carbon reduction of snow albedo

Climate models indicate that the reduction of surface albedo caused by black-carbon contamination of snow contributes to global warming and near-worldwide melting of ice1,2. In this study, we generated and characterized pure and black-carbonladen snow in the laboratory and verified that black-carbon contamination appreciably reduces snow albedo at levels that have been found in natural settings...

متن کامل

The Role of Surface Albedo Feedback in Internal Climate Variability, Transient Climate Change, and Equilibrium Climate Sensitivity

A coarse resolution coupled ocean-atmosphere simulation where surface albedo feedback is artificially suppressed by prescribing surface albedo is compared to one where snow and sea ice anomalies are allowed to affect surface albedo, as the model was originally designed. Canonical CO -doubling experiments were performed with both models to assess the impact of surface albedo feedback on equilibr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017